Explaining Diversity in Metagenomic Datasets by Phylogenetic-Based Feature Weighting
نویسندگان
چکیده
Metagenomics is revolutionizing our understanding of microbial communities, showing that their structure and composition have profound effects on the ecosystem and in a variety of health and disease conditions. Despite the flourishing of new analysis methods, current approaches based on statistical comparisons between high-level taxonomic classes often fail to identify the microbial taxa that are differentially distributed between sets of samples, since in many cases the taxonomic schema do not allow an adequate description of the structure of the microbiota. This constitutes a severe limitation to the use of metagenomic data in therapeutic and diagnostic applications. To provide a more robust statistical framework, we introduce a class of feature-weighting algorithms that discriminate the taxa responsible for the classification of metagenomic samples. The method unambiguously groups the relevant taxa into clades without relying on pre-defined taxonomic categories, thus including in the analysis also those sequences for which a taxonomic classification is difficult. The phylogenetic clades are weighted and ranked according to their abundance measuring their contribution to the differentiation of the classes of samples, and a criterion is provided to define a reduced set of most relevant clades. Applying the method to public datasets, we show that the data-driven definition of relevant phylogenetic clades accomplished by our ranking strategy identifies features in the samples that are lost if phylogenetic relationships are not considered, improving our ability to mine metagenomic datasets. Comparison with supervised classification methods currently used in metagenomic data analysis highlights the advantages of using phylogenetic information.
منابع مشابه
The Phylogenetic Diversity of Metagenomes
Phylogenetic diversity--patterns of phylogenetic relatedness among organisms in ecological communities--provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relati...
متن کاملA Novel Scheme for Improving Accuracy of KNN Classification Algorithm Based on the New Weighting Technique and Stepwise Feature Selection
K nearest neighbor algorithm is one of the most frequently used techniques in data mining for its integrity and performance. Though the KNN algorithm is highly effective in many cases, it has some essential deficiencies, which affects the classification accuracy of the algorithm. First, the effectiveness of the algorithm is affected by redundant and irrelevant features. Furthermore, this algori...
متن کاملPhyloSift: phylogenetic analysis of genomes and metagenomes
Like all organisms on the planet, environmental microbes are subject to the forces of molecular evolution. Metagenomic sequencing provides a means to access the DNA sequence of uncultured microbes. By combining DNA sequencing of microbial communities with evolutionary modeling and phylogenetic analysis we might obtain new insights into microbiology and also provide a basis for practical tools s...
متن کاملThe Natural Product Domain Seeker NaPDoS: A Phylogeny Based Bioinformatic Tool to Classify Secondary Metabolite Gene Diversity
New bioinformatic tools are needed to analyze the growing volume of DNA sequence data. This is especially true in the case of secondary metabolite biosynthesis, where the highly repetitive nature of the associated genes creates major challenges for accurate sequence assembly and analysis. Here we introduce the web tool Natural Product Domain Seeker (NaPDoS), which provides an automated method t...
متن کاملFast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2015